¨a®`ºÞ²z¬ì§Þ»Pª¾ÃѱMÄæ

§C½ÄÀ»¶}µo³]¬I¡]Low Impact Development, LID¡^©ó³£¥«°Ï¼É«B±Æ¬x¨t²Î¤§³]­p»PÀ³¥Î

³¢¯Â¶é ¬ü°ê¬ìù©Ô¦h¤j¾Ç¤g¤ì¤uµ{¾Ç¨t ±Ð±Â
³Åª÷«°¡B¦¿¥Ó¡B¸­´Ë®ü ¦æ¬Fªk¤H°ê®a¨a®`¨¾±Ï¬ì§Þ¤¤¤ß ¾ã²z
 

¤µ¤Ñ±MÁ¿¦b³£¥«°Ï¤º¼É«B±Æ¬x¨t²Î¤¤¦p¦ó¥[¤Jlow impact development (LID) concepts and designs¡C¦Û1970¦~¥H¨Ó¡A¬ü°ê´N¶}©l±À°Ê¦p¦ó¨Ó³B²z³£¥«°Ï¸Ì­±¤ôÀô¹Ò¡]water environment¡^¡B±Æ¤ô¡]drainage¡^¡B»W¬x¡]detention¡^ªº°ÝÃD¡C¨ì©³­n«ç»ò°µ©O¡H¤j®a¶}©l®É³£·N¨£¤£¦P¡C©Ò¥H·íFederal Clean Water Act¥ßªk¥H«á¡A¤uµ{®v¾Ç·|ªº¤ÏÀ³´N¬O¥ÑBest Management Practices (BMP) §@°_¡CBMPªº·N«ä´N¬O»¡ I will use my best and also ask your best to do the best job¡C³o¬O¤@­Ó¾Ç²ßªº¹Lµ{¡]a learning curve¡^¡C¬ü°êªº Stormwater BMP¾Ç¤F¦³¦h¤[¡H±q1970¦~¡A²³»¡¤ª¤ª¡C¤@ª½Á¿¨ì1990¦~¡A³Ì«á¤j®a¦P·N Low Impact Development (LID) approach ¬O³Ì¦nªº¡C¦ó¿×LID approach ©O¡H´N¬O¶}µo«á¡]post-development¡^³£·|°Ï¦b¥X¤ô¤fªº³w¬y¤À§G©M¶}µo«e¡]pre-development¡^¬Û¦ü¡B¬Æ¦Ü¬O¤@­Pªº¡C



©Ò¥H¬ü°ê²{¦b¤w¸g¤£½Í stormwater BMP¤F¡A¦]¬°BMP¬O¤@­Ó¾Ç²ß¹Lµ{¡A¤£¬O¥Øªº¡CStormwater BMP¬O§Ú­Ì¦bºN¯Áªº¹Lµ{¡A³Ì«á§ä¨ì§Ú­Ìªº¥Øªº¡C¥Øªº¬O¤°»ò¡H´N¬O«ç»ò¼Ë§â³£·|°ÏÅܦ¨ Low Impact Development Environment¡]LID Àô¹Ò¡^¡A¤£¬O»¡§C¶}µo¡]low development¡^¡I§Ú­Ì­n¨C­Ó³£·|°Ï³£¬O°ª¶}µo¡F¦ý¬O³B²z±Æ¬xªº°ÝÃD®É¡A¯à°÷¦b¥X¤ô¤fªº¦a¤è¡A¤ô¶q±Æ¥Xªº¤èªk¡A´N¹³¶}µo«e¬OºC¦Ó¦³§Ç¡C©Ò¥H©ñ¬yºÞ¨î¡A¤ô½è±±ºÞ¡A¨Ï³£·|°Ï¤ôÀô¹Ò¦n¹³¤´¦b¥¼¶}µo¤@¼Ë¡A¦ý­n«ç»ò°µ¡H

¦Ñ¥«°Ïªº±Æ¤ô¤è¦¡¬O«Î³»ªº¤ô¡Bµ¡¤áªº¤ô¡B¥­»Oªº¤ô¶°¤¤¥H«á¡A¦A¥Î±ÆºÞ±µ±ÆºÞªº§Ö³t¤è¦¡±Æ¥X¡A³o¬O«D±`¦³®Äªº±Æ¤ô¡C¦ý¤ô¬O¤£À³¸Ó³o¼Ë¤l³sÄòªº¶°¤¤¡A§Ú­ÌÀ³¸Ó¾¨¶q¤À´²¤ô¶q¡A¬G±ÆºÞ±µ±ÆºÞªº±Æ¤ô¤è¦¡¤£¬OLID¡ILID³]­pªº²Ä¤@¨B¬O¦b³w¬yªº·½ÀY¥ý­n§@ – “minimization of directly connected impervious area (MDCIA)¡C¾¨¶q´î¤Ö¤£³z¤ô­±ª½±µ³s±µ¨ì¤U´å¤£³z¤ô­±¡C¦p·Ó¤ù1©Ò¥Ü¡A¥ô¦ó¨â­Ó¤£³z¤ô­±¤§¶¡¡B³£­n¦³¥iº¯¤ôªº¯ó¦a©ÎºÚ¦a¡CA LID layout¡]ªÅ¶¡§G§½¡^²Ä¤@¨B¬O­n¨D¡G(1) ¨ÌMDCIAªº­ì«h¡A­q©w¤ô¬y¸ô®|¡]flow path¡^¡A(2) LID basins¡]®ü´ÖºÚ»W¦À¡^and pavers¡]®ü´Ö³z¤ô¼h¡^¥²¶·©ñ¸m¦b¤W´å³w¬y²£¥Í³B as a runoff source control¡C

 

  
·Ó¤ù1 ¾¨¶q´î¤Ö¤£³z¤ô­±ª½±µ³s±µ¨ì¤U´å¤£³z¤ô­±

 

A LID basin ´N¬OÀ±¸É¥¼¶}µo«eªºâp¦a¡A¤]´N¬O hydrologic depression losses¡]approximately 10 to 50 mm per unit area¡^¡C¦]¦¹¡A¶}©ñ«áªºLID basins ´N¹³¤H¤uâp¦a¤@¼Ë¥i¥H³B³B¬Ò¬O¡AA LID basin ¬O¬°¤F´î¤Ö³w¬yÅé¿n¶q¡]runoff volume reduction¡^´N¹³¦ÛµMâp¦a§l¤ô¤J¤g¡C¦ÛµMâp¦aªººI¤ô¶q·í¥H 3 to 6 months «B¶q¬°¥D¡C¬Û¹ï©óLID basin ªº¬Oº¢¬x¦À¡]Flood Detention Basin¡^¡Aº¢¬x¦À¬O¬°´î¤Ö10-yr ¨ì 100-yr³w¬y¬y¶q¡]runoff flow reduction¡^¡A¬O¥þ°Ï°ì©Êªº¡B­n¦b¬x¤ô¶°¤¤ªº¥X¤ô¤f³B¡C¤@­Ó¶°¤ô°Ï¤º¡A¥i¦³³\¦h LID basins and pavers ©ñ¦b¤W´åªº¤ô·½ÂI¡]source control¡^¡A¦ý¥u»Ý­n¤@­Ó Flood Mitigation Detention Basin©ñ¸m¦b³Ì¤U´åªº¥X¤ô³B¡]flow release control¡^¡C

 

  
·Ó¤ù2 LID Layout Æ[©À

 

³o±i·Ó¤ù2´N¶}©l¦³ÂI LID layout Æ[©À¡A§Ú­Ì§âµóÃ䪺¦w¥þ®q¡]street Curb¡^¡A³o¦a¤è¥´¶}¤F¡AÅý¤ô¥ý¶i¤JçE¯ó¡uâp»W¦À¡v¡]LID basin¡^¡Câp»W¦Àº¡¤ô«á¡AOverflow¤~¬y¨ì°¨¸ô¡C¦b¨â­Ó¤£³z¤ô­±¡]°±¨®³õ¤Î°¨¸ô¡^¤§¶¡¥[¤Jªºº¯¤ô­±¡C¨ä¥Øªº¬OÅý¤ô¯à°÷¦³¾÷·|¬yºC¤@ÂI¡A¯à°÷¦³º¯³zªº¾÷·|¡C1950-1970¤§¶¡¡A§Ú­Ì§â³w¬yª½±µ±Æ¨ì°¨¸ô¤W¡A²{¦b§Ú­ÌÅý¤ô¥ý¸g¹L¤H¤uâp»W¦À¡CµM¦Ó­n¦p¦ó§âLID basins and pavers ¸m¤J²{¦³ªº±Æ¤ô¨t²Î©O¡H¦b³£·|°Ï¸Ì­±¡A³Ì¤j¬x¤ô¶q³£¬O¦b°¨¸ô¤W¡A©Ò¥H¬x¤ô¨ì¤F°¨¸ô¡B´N¤£®e©ö¦A§@LIDªº±±ºÞ¡C¦]¦¹¡ALIDªº§G§½¬O¦b°¨¸ô¶°¤¤¤ô¬y¤§«e©Ò§@¦U¶µLID¦¡ªº runoff source control¡C

 

¹Ï1 Low-Impact Development Concept

 

¹Ï1¬°Low-Impact Development Conceptªº»¡©ú¡A³~¤¤°¨¸ô®ÇÃ䪺Buildings²£¥Í³w¬y¡A¦b¤ô¶i¤J°¨¸ô¤§«e¡AÅýªì´Á¨R¬~¦a­±ªº¦Ã¤ô¡]flush volume¡^¥ý¬y¤JLID basin¡AÀx¦s¦b¤H¤uâp»W¦À¡B¦A¶i¦æº¯³z¡C·íâp»W¦Àº¡¤F¥H«á¡A¦h¾lªº¤ô¶q¦A·¸¬y¡]overflow¡^¨ì¤H¦æ¹D¡A¦A±q¤H¦æ¹D¦A¬y¨ì°¨¸ô¤W¡C°¨¸ôªºµóÃä·¾¤Î¤U¤ô¹D¬O¥H±Æ5¨ì10¦~¬x¤ô¬°¥D¡A¤@¦Ê¦~¬x¤ô±N·|²T¨ì°¨¸ô¤¤¤ß¡A¨º»òLID basin ¶i¤ô¤fªº°ªµ{À³§C©óBuildingªº¶iªù¥x¶¥¡C¦pªG¤@­Ó³£·|°Ï¡A¿ï¾Ü°ªµ{ªº¤èªk³£¬O¥Î100-yr base flood elevation ·í°ò·Ç¡A¼É«B®Éwho cares stormwater on the street¡C¨C­Ó®aªù¤f¥u­n°÷°ª¡A¬x¤ô®É¡Aªù«eªºµó¹D·|¦¨¬°¼È®É©Êªº¤pªe¡A³o¬O©~¥Á¥i¥H±µ¨üªº¨Æ¡C¨º»ò³£·|°Ï¸Ì­±¡A¤g¤ì§Þ®v¡B«Ø¿v§Þ®v¡A³£¥«³]­p®v¡A³£­n¦³³obase flood elevation ªºÆ[©À¡C©Ò¥H¦b¨î­qªk³Wªº®É­Ô¡A«Ø¿v®v·|¦V¤g¤ì§Þ®v´M°Ý¤@¦Ê¦~¬x¤ô¦ìªº°ªµ{¦b­þ¸Ì¡H

¬x¤ôªº¬y°Ê¬O±q¤ôªº·½ÀY°_¡A¦b³£·|°Ï¸Ì­±¡A¬x¤ôªº·½ÀY¬O±q«Î³»¶}©l¡A©Ò¥H¦b¬x¤ôªº·½ÀYªº§CÂI­n°µLID unit¡C¤ô¥ý¦bLID unit ³QºI¦í¡AºI¦h¤Ö©O¡H³o¬O¦¨¥»®Ä¯q°ÝÃD¡C§Æ±æ¤H¤uâp»W¦À¶V¤j¶V¦n¡A¦ý¬O¶V¤j¶V¶Q¡A©Ò¥H­ì«h¤W¬O¥H¯à°÷ºI¨ì80%ªº³w¬y¶q¡A´N¬O¦b100³õ­°«B¤¤¡B¥u¦³20³õ­°«B¶W¹LLIDâp»W¦ÀªºÀx¤ô¶q¡C¦h¾lªº¤ô¬y¨ì°¨¸ô¤W¡C°¨¸ô¬O Q-design¡]±Æ¬x¬y¶q¡^¡A´N¬O§â°¨¸ôªºµóÃä·¾¹D·íªe¹Dªº¤è¦¡¨Ó³]­p¡C·í°¨¸ôªº¤ô¬y¨ì¥X¤ô¤fªº¦a¤è´N¥²»Ý±Æ¨ì¤U´åªe¤t¸Ì­±¡C¦b¥X¤ô¤fªº¦a¤è¡A­n¨Ì·Ó¤¹³\¥X¤ô¶q¡]allowable flow release¡^³]­pV-design¡]º¢¬yÅé¿n¡^¡C¤¹³\¥X¤ô¶q¬O¥H«ì´_¥¼¶}µo«eªº¥X¤ô¶q¬°¨ÌÂk¡C¶}µo«áªº¥X¤ô¶q¡A±`±`¬O¤j¹L©ó¤¹³\¥X¤ô¶q¡A³o®É­Ô«ç»ò¿ì¡H¦p¦ó´î§C¶}µo«áªº¬x®p¡]Q-reduction¡^¡H·íµM­n¥Î Detention basin ªº¤è¦¡¨Ó³B²z¡C©Ò¥H¦b³]­p¤@±ø±Æ¤ô¥D·F½u®É¡A¦b¶i¤ô¤f¡]street inlet¡^ªº¦a¤è¥þ³¡¬OLID units¡F¤]´N¬O I-designs¡C°¨¸ô±Æ¤ô´N¹³ªe¤t¤@¼Ë­n§@ Q-design¡A³Ì«á¦b¥X¤ô¤f­n°µ V-design¡C³oºØ«ö¨B´N¯Zªº±À®i¡A´N¬O¥¿½TªºÀ³¥Î¤F³£¥«±Æ¤ô¤Î¨¾¬x¦@ªvªºÆ[©À – stormwater management for frequenct, small events and flood mitigation for extreme, large floods.

 

¹Ï2 LID³]­p®×¨Ò

 

¹Ï2¤@­Ó®×¨Òªº»¡©ú¡A±Æ¤ô¥D·F½u±q³o¤@ÂI¶}©l¡A¨C­Ó manhole ³£¬O¤@­Ó source of runoff because more runoff flows enter the sewer system¡C¦bsourceªº¦a¤è°µLID unit¡C¤£½×¬O¥Î«B¤ôªá¶é¡]rain garden¡^ or ³z¤ô¼h¡]paver¡^¡ALID basinº¡¤ô«á¡A¦h¾lªº¤ôº©¬y¶i¤J°¨¸ô¡C¦b°¨¸ô¤Î¨ä¤U¤ô¹D¶i¤Jªe¤tªº®É­Ô¡A­n¨Ì·Ó¡u¥X¬y±±ºÞ¡v¨Ó³]­pº¢¬x¦À¡]detention basin¡^¡C³o¼Ë¤lªº¸Ü¡A¤º¤ô¡]on-site runoff¡^¥i¥H¥ý±Æ¨ìº¢¬x¦À¡A¬y¹Lµ{«OÃÒ¨ä³Ì¤j¥X¤ô¶q¤£·|Åýªe¤t¶W¸ü¡A¥ç§Yªe¤tªº¥~¤ô¡]off-site runoff¡^¤£·|°ªº¦¡C¦p¦¹ªº¬x±Æ³]­p¨Ï³£¥«ªº¤º¤ôÀô¹Ò¤Î¥~³òªe¤t³£¬O°·±dªº¡C©Ò¥H¡AStormwater Green Concept´N¬O(1)¤W´åLIDªº·½ÀY±±¨î¡uÀW¦Ó¤pªº«B¶q¡v¡]reduction in runoff volume¡^¡A¦A¥[¤J(2)¤U´åº¢¬xªº©ñ¬yºÞ¨î¡u¤j¦Óµ}ªº¼É«B¡v¡]reduction in runoff flow¡^¡C

 

  
·Ó¤ù3 °±¨®³õ³]­p®×¨Ò

 

LID units ¥D­n¤À¨âºØ: (1)³z¤ôçE­±¡]Paver¡^»P(2)º¯¤ôâp»W¦À¡]Basin¡^¡AA LID basin °ò¥»¤W´N¬O¤@­Ó¤pªº¤H¤uâp¦a¦¡ªººI¤ô¦À¡C¦p·Ó¤ù3©Ò¥Ü¡A¦b¤@¶ô¶}µoªº¤g¦a¡]1 to 2 hectare¡^ªº§CÂI³B°µLID basin¡A§Ú­Ì¬O§Æ±æ¯à°÷100%ºI¦í·½ÀYªº«B¤ô¡C¨Æ¹ê¤W¬O¤£¤Ó¥i¯à¡A¦]¬°°±¨®³õÁ`·|¦³¤@³¡¤Àªº³w¬y¬Oª½±µ¬y¨ì°¨¸ô¤W¡A¦Ó¨S¦³¸g¹LLID basin¡A©Ò¥H¦b³]­p¤@­ÓLID basin ®É¥ý­n­q©w¡u¬y°ì­±¿n¡v¬°¦ó¡CA LID basin ¤j¬ù¬O¨ä¬y°ì­±¿nªº |/3 ¨ì |/10¡C

 

  
¹Ï3 LID units(1)³z¤ôçE­±¡]Paver¡^»P(2)º¯¤ôâp»W¦À¡]Basin¡^ªº³]­p·§©À

 

A LID basin is built with 30-45 ¤½¤À²`ªº¦aªíâp»W¤ô¦À¡B¦a¤U¦A¤@¼h¬â¡]sand-mix¡^¡B¤@¼h¥ÛÀY¡]gravel¡^¡B¦A¥[¤J³z¤ô¦¡±Æ¤ôª¼ºÞ(perforated sub-drain pipe)¡CLID basin¬J¥i¥H¦aªíºI»W¤ô¡A¤S­n¦a¤U³z¤ô¡B¤Îª¼ºÞ§l¤ô¤Î±Æ¤ô¡CA LID basin ¬O¤@¶ô®üºø¡C¤ô¤£Â_±q¤j­±¿nªº¬y°ì²£¥Í¡B¦A¬y¨ì³o¤@­Ó¤p¤pªº®üºø¤W¡C¤ô¥ý¦s©ñ¦b¦aªíâp»W¦À¤¤¡A¦À¤¤¤ô¤£Â_¦]¬°ª¼ºÞªº±j¤O§l¤ô¦Ó¤Uº¯¡C¦p¦¹¡A®üºø±N¥i¥H¥Ã»·ªº¦a­±¨Ñ¤ô¤Î¦a¤U±Æ¤ôªº´`Àô¤¤¡C°ê¤º¥H¥þ­±¿n¨ÓçE³z¤ô¼hçE­±¡C¸Õ·Q­Y¾ã­Ó¶°¤ô­±¿n³£¬O®üºøçE­±ªº¸Ü¡A³o®üºøÅé¤@¥¹Àã³z¥H«á¡]soil saturation¡^¡A¦a¤U¤ô®w¤vº¡¡C³oLID®üºø´N¤£¦A§l¤ô¡]¦]¬°¨S¦³ª¼ºÞ±Æ¤ô¡^¡CA LID unit ¤£½×¨ä¤j©Î¤p¡A¨ä®ÄªG¬O¦b©ó¬O§_¤ô¬yºZ³q¡A­Y¥u¬O¤@Åy¦º¤ô¡A«hLID¤£¦ý¤j¦ÓµL®Ä¨Ã¤Ï¼W¤£«K¡C

LID³z¤ôçE­±¡]Paver¡^¤W¥u¦³Á¡½¤¦¡ªº¬y°Ê¦aªí¤ô¡A¤ô¬y°Ê«Ü§Ö¡A©Ò¥H¥²¶·­n¦bPaver©³¤U¥ý©ñ¤@¼h¤j¥ÛÀY¡]gravel¡^¡C¥ÛÀY¼hªº¤Õ»Ø´NÅܦ¨¦aªí¤U»W¤ô¥\¯à¡Cµ¥¨ì¥ÛÀY¼hº¡¤ô¥H«á¡A¤ô¤~¯à¦V¤U³zº¯¨ì¬â¤l¼h¡CLID Paver¥²¶·¥ý¾Q¨F¼h¦b¤U¡B¦A¥[¥Û¼h¦b¤W¡CLID Basin ¥ý¾Q¥Û¼h¦b¤U¡B¦A¥[¨F¼h¦b¤W¡C¦p¦¹¡A¤~¬O¦³®Äªº»W¡Bº¯¡B§l¡B±Æªº¥þ¥\¯à¨t²Î¡C¦pªG¥ÛÀY¼h¸ò¬â¼h©ñ¤Ï¤F¡ALID unit¥u¦³­«»\¡CThe operation of a LID unit is always flow-path dependent¡A©Ò¥H¹ï¤ô¸ô¿ï©w­n«ÜÂÔ·V¡C¬I¤u¬O¤@¼hªº¤@¼h¥[»\¡Aµ´¹ï¤£¬O§¹¥þ¥i¥H¥Î¾÷±ñ¨Ó³B²zªº¡A¦p·Ó¤ù4ªº®×¨Ò©Ò¥Ü¡C

 

·Ó¤ù4 Example Construction of Rain Garden


A LID unit ªº±Æ¤ô®É¶¡¡]drain time¡^­n¦h¤[¡H¤»¤p®É¡H¤Q¤G¤p®É¶Ü¡H¥|¤Q¤K¤p®É¶Ü¡H­n¿ï­þ¤@­Ó¡H¥xÆW¦b±ö«B©uªº®É­Ô¡A¨C¤Ñ¤U«B¡C¦b°®©uªº¸Ü¡A¦n´X¤Ñ¨S¦³«B¡C©Ò¥H­Y¿ï¤Q¤G¤p®É¥H½T«O¤ô½è¥R¤À¹LÂo¡C¦b«B©u®É¡A©~¥Á·|»¡¬°¤°»òLID¤Ñ¤Ñ³£¤@Åy¤ô¡H¨ä¦¸¡ALIDªº©µªø©Ê±Æ¤ô¤]·|¤Þµo¤ôÅv°ÝÃD¡A¦p¦ó¨Ì»Ý­n­q©w±Æ¤ô®É¶¡¬O³]­pªº°ÝÃD¡C¨ä¦¸­n°ÝLID basin ªº¦aªíâp»W¤ô²`¬O¦h¤Ö¡H¬ü°êDenver¥«¥Î30 ¨ì 45¤½¤À¡C¥xÆWªº«B©u¤£¤@¼Ë¡H¥xÆWLID basin À³¸Ó¦h²`¡H³o©MºI¤ô¶q¦³Ãö¡C¬ü°êEPA«ØijLID unit ªº³]­pºI¤ô¶q¬OWater Quality Capture Volume¡]QWCV¡^¡AWQCVÀ³¸Ó¯à°÷¤j¨ì¥i¥HºI¤U80%ªº­°«B³w¬y¶q¡C©Î¬O¨C100³õ­°«B¤¤¡A¥u¦³20³õ«B¶q·|²Tº¡¨Ãº©¹LLID unit ªººI¤ôâp¦À¡C¤]´N¬O»¡¦³¤@¦Ê³õ­°«B¡A­Y±q¤p±Æ¨ì¤j¡A«h²Ä¤K¤Q³õªº­°«B¶q´N¬OWQCV¡C¥xÆW²{¦b¦Ò¼{¥H40¨ì50mmªº«O¨|¤ô¶q¨Ó³]­pLID unit¡CÁöµM¬ü°êªºWQCV¤j¬ù¬O10¨ì20¤½Âç¡A¦ý¥Ñ¹Ï4ªº»¡©ú¡A§Úı±o¥xÆWªº45mm«O¨|¤ô¶q¬O¥i±µ¨ü¡A¦]¬°¥xÆWªºLID­Ý¦³º¢¬x¥\¯à¡C

 

¹Ï4 How to size the WQCV at Taipei

 

¤U¹Ï5¤¤¬O¤@­Ó40¦Ì­¼50¦Ìªº¤@­Ó«Ø¿v°ò¦a¡A§Ú­Ì§â¨ä¤¤ªº10¦Ì¼e«×®³¨Ó°µLID basin¡A¥|¤ñ¤@ªº­±¿n¤ñ¨Ò¡C«O¨|¤ô¶q¬O45mm¡A©Ò¥H45mm­¼¨â¤d¥­¤è¦Ì¡A»Ý­n¤E¤Q¥ß¤è¦Ìªºâp»W¤ô¶q¡CLID unitªí­±ªº­±¿n¬O¤Q¦Ìªº¼e«×¡A¥|¤Q¦Ìªºªø«×¡A¥¦¥»¨­¬O¥|¦Ê¥­¤è¦Ì¡C¦pªG­n¨ã¦³¤E¤Q¥ß¤è¦ÌªºÅé¿n¡A¥¦»W¤ô²`«×¬O0.225¦Ì¡C¦pªG¤W¼h©ñ¬â¡A¬âªº¤Õ»Ø¤ñ¡]porosity¡^¬O25%¡C¤U¼h§Z¥Û¬Oªº¤Õ»Ø¤ñ¬O40%¡C§Ú­Ì¨ú0.42¦Ìªº¬â¼h¤Î0.30¦Ìªº§Z¥Û¼h¡A§â³o¨â­Óªº²`«×­¼¤W¥¦ªº¤Õ»Ø¤ñ¡A­è¦n¬O0.225mªº¤ô²`¡C³o´N¬OLID unit's underground storage¡C¤U¤@­Ó¬D¾Ô¬O§Æ±æ LID unit's drain time ¬O¤Q¤G¤p®É¡A¤]´N¬O¦b¤Q¤G¤p®É¤º¡A§â0.225mªº¦aªí¤ôº¯¤J¬â¤Î§Z¥Û¼h¤¤¡C0.225m/l2hr ¬Oº¯¤ô¶q¬O18.75mm/hr¡C¸Õ°Ý­n¨ì­þ¸Ì¥h§ä¨ã¦³¦p¦¹º¯¤ô©Êªº¤g¬â²V¦XÅé¡]sand-mix¡^©Î¥Û¬â²V¦XÅé¡]gravel-mix¡^¡H

 

¹Ï5 LID¤Jº¯¼h³]­p®×¨Ò»¡©ú

 

³o¼Ëªº¤@­Ó«Ø§÷­n¨ºùØ´M¡H´Nºâ¦³«Ø§÷¤S¦p¦ó½T©w¨äº¯¤ô¥\¯à¡C³o®É­Ô§Ú­Ì´N»Ý­n°µ¹êÅç¡]¦p·Ó¤ù5¡^¡A¶}©l¬â¤Î¤g°t®Æ¡A¦b¹êÅç«Ç¸Ì­±¤@±í¤@±íªº°µ¡A§Ú­Ì¥Î85%ªº¬â¤l¥[15%¾ð¥Ö¡C¨ì³B³£¦³¾ð¡A¾ð¥Ö¾ð¸­¨ì¤F¬î¤Ñªº®É­Ô¡A°ïªº¸ò¤s¤@¼Ë¡C§Ú­Ì¤]¥Î¬â©M¨ä¥¦¼oª«¤Î©U§£°t®Æ¡A¨Ò¦p°ï¿nªº»G»k¾ð¸­¡A³ø¯È¡A½ü­L¡Arecycled ªºÄê¿jÀY¡C§Ú­Ìµo²{¦³¨Ç°t®Æ§tÆP¶q¤Ó°ª©Î§t»Ä¶q¤Ó°ª¡C¤@©ñ¶i¥h¥H«á¡A¹ï¦a¼h¬O¦³¦Ã¬V¡C

 

·Ó¤ù5 ¹êÅç«Ç¤Î¤Jº¯¹êÅç±í

 

°£¤F¹êÅç«Ç¤§¥~¡A·Ó¤ù6¬O§Ú­Ìªº³¥¥~´ú¸Õ field test on rain garden¡C³o­ÓLID rain garden ¦³400¥­¤è­^§`¡A¨ä¬y°ì­±¿n¬O¨â­^¯a¡]acres¡^¡A¦³¨â®y´ú«B¯¸¡C¶i¤ô¤f¬O»Î±µÃä·¾ªº§ÀºÝ¡C§Ú­Ì¥Î¤@­Ó rectangular weir ¨Ó´ú¤J¤ô¶q¡C³o¬O3¤½¤Ø²`ªº¦a¤UÆ[´ú¤«¡Aº¯¤ô¥ý¬y¤J¤@­ÓÅK²°¤º¡A¸g¹L¤@­Ótriangular weir¨Ó´ú¥X¤ô¶q¡C¦pÆ[´úªº®×¨Ò©Ò¥Ü¡A¥u¦³«e´Áªº³w¬y¬O³Q rain garden ºI¦í¡C¦h¥bªº«á´Á³w¬y¬Oº©¬y³q¹L rain garden¡C¹ï³o³õ­°«B rain garden ¤´µo´§¨Ç·Lªº´î¤Ö¬x®pªº®ÄªG¡]dQ¡^¡C¹ï©ó³sÄòªø®É¶¡ªº­°«B¡Arain garden ³B©óº¡¤ô¡Cº¯¬y¬O©T©w¤ôÀY¡B¹¡¦X¤ô¼h¡Bí©wº¯¤ô¡C«B°±«á¡Aº¯¬y¤~³vº¥´î¤Ö¡C¦b±ö¨â©u¡Aªø´Áº¡¤ô¥i¯à°A¦ä´þ¥Í¡C¦]¦¹±Æ¤ô§Ö¤S¦³Àô«O¥\®Ä¤~¬O¥xÆW LID unit ªº¯S¦â¡C

 



  
·Ó¤ù6 LID³¥¥~´ú¸Õ³õ©Ò

 

CONCLUSION

A LID unit ¥D­n¬OÀ±¸É hydrologic depression loss for frequency runoff events. A detention basin ¥D­n¬OÀ±¸É hydrologic infiltration losses and the impact of flow concentration during extreme events. A LID unit has a diminishing effect on the peak flow reduction. In general, a LID may have a significant impact on 2- to 5-yr peak flow reductions, while it has almost no impact on 10- to 100-yr peak flows. If we like to expand a LID to function for both reductions in runoff volume and peak flow, then the LID unit can be connected to a downstream detention basin. For a small catchment, this detention basin can be an underground vault, while an on-surface basin may serve a large catchment for flood mitigation purposes.¡]¦p¹Ï6¡^

 

¹Ï6 LID¦b¤j«B¶q¨Æ¥óªº´î¬x®Ä¯q

 

The more LID units we built, the more maintenance we will impose on ourselves. A LID unit has its life cycle of 10 to 15 years. Management details for LID units need to be legalized and enforced through the local regulatory agencies or home owner associations. A regular maintenance program must be established for who will be in charge and who shall share the cost for every major LID unit. ³ø§i¨ì¦¹µ²§ô¡AÁÂÁ¦U¦ì¡C

 

 

°Ý¡G³¢¦Ñ®v§A¦n¡A¤@­Ó²µuªº°ÝÃD½Ð±Ð¡A¤§«e§Ú­ÌÅ¥¹LLIDºtÁ¿¡CLID¤j·§¬O¤@¦~ÀW²vªº­°«B¡C§AºtÁ¿¤@¶}©l¤]´£¨ìLIDÂê©w2-5¦~ÀW²vªº­°«B¡C¦]¬°¥xÆW¸ò¬ü°êªº±¡ªp¤ñ¸û¤£¤@¼Ë¡A§A­è¤]´£¨ì»O¥_¥«¤­¦~¥­§¡­°«B¤j·§¬O78.8 mm ¥ª¥k¡ALIDªº2-5¦~­°«B¶q¬O«ç»ò¼Ë¡C

¢Ï¡G¦pªG§Ú­è¤~¦³Á¿LID¬O¥H2-5¦~ÀW²vªº­°«B¬°³]­p«B¶q¡A¨º¤@©w¬Oªí¹F¥¢»~¡C§Ú­Ì¤£¥Î¡u¦~¯Å§Ç¡vªºÀW²vÃö«Y¨Ó´y­zLIDªº³]­p«B¶q¡C§Ú­è¤~±j½Õ¬O¯à°÷ÄdºI80%ªº­°«B³w¬y¶q¡C¨Ò¦p§Ú¦³¤@¦Ê¦¸ªº­°«B¡A±q¤p±Æ¨ì¤j¡Fa LID unit À³¯à100%ÄdºI«e¤K¤Q¦¸­°«B©Ò²£¥Íªº³w¬y¶q¡C³o¬OLID³]­p°ò¦¡C­Y§A­n¥Î78mm¡A§Ú»{¬°µy·L¹LÀY¡C§Ú»{¬°45mmÁöµM°ª¤@ÂI¡A¦ý¥i¥H±µ¨ü¤]¥i¦æ¡CLID¬OÀ±¸É¶}µo«eªº depression losses.

°Ý¡G³¢¦Ñ®v¬O¤£¬Oµ¹§Ú­Ì¤@­Ó°Ñ¦Ò¼Æ¦r¡A¤j·§LID­°«B±j«×¬O¦h¤Ö¡H

¢Ï¡G§Ú­Ì³q±`¥Î rainfall event depth (Note: runoff volume = runoff coefficent x rainfall depth x area) ¬°LID ­p¶q¡C°²¦p¤U¤@¦Ê³õ«B¡A§â³o¤@¦Ê³õªº­°«B¶q°µ¥­§¡¬O¿× average rainfall event depth¡C³o¤£¬O¶Ç²Î¤ô¤å¤¤ªº rainfall depth-duration ·¥ºÝ¦~¯Å§Ç¤ÀªR(annual maximam series)¡C¥u¦Ò¼{¨C¦~¤@¦¸³Ì¤j¬x¤ôªºLog-Person III¥i¦ôºâ100¦~¤@¹J¬x¤ô¶q¡C¨C¤@¦Ê¦~¤¤³Ì¤j¬x¤ôªº¡u¦~¯Å§Çnon-exceeding probability¡v¬O99/100¡C¬°¤F³]­pLID units¡A§Ú­Ì¶·­n¤ÀªRªø¦~¨Ó©Ò¦³ªº­°«B¤Î¨ä¡u¥þ¯Å§Ç¡vªº²Î­p¤À§G¡C¨Ò¦p¨â¦~¤¤¦³¤@¦Ê³õ­°«B¡F³Ì¤j¤@³õªº¡u¥þ¯Å§Çnonexceeding probability¡v¤]¬O99/100¡C¦ý¨âªÌ«o¤j¤j¤£¦P¡C¬°ÁקK²V²c¤£²M¡A¦bLIDªº³]­p¤¤¡F¨ä³]­p­°«B¬O¥H¡u¥þ¯Å§Çnonexceeding probability¡v¨Ó­q©w¡F¤]´N¬O³QºÙ¬°¡uºI¤ô²v¡v(runoff capture rate)¡C·íºI¤ô²v¬O80%ªº¥þ¯Å§Çªº­°«B¶q (WQCV)¡A´X¥G¬O3¨ì6­Ó¤ë¤@¹Jªº¦~¯Å§Çªº­°«B¶q¡C¤@¦~¸Ì­±LID unit ¥­§¡·|¦³¨â¦¸²Tº¡¡C¦ý«o¥i§¹¥þºI¦í80%ªº­°«B³w¬y¡C

°Ý¡G§Ú·Q½Ð±ÐLID³]¬I¸Ìºû«ù¥¦ªºinfiltation rate¬O«Ü­«­n¡A¦³¨S¦³¥i¯àclogging·|­°§C¥¦­ì¨ÓBMP¹ï®ø´î¦Ã¬Vªº¥\¯à¡C

¢Ï¡G«D±`¦nªº°ÝÃD¡C§Ú¥»¨Ó·QÁ¿¡A¦ý¨S¦³®É¶¡¥h²Ó½Í³o­Ó°ÝÃD¡C­è»\LIDªºªì´Á®É­Ô¡Ainfiltartion rate«D±`°ª¡C¥i¥H°ª¨ì 10 ¨ì 15 inch/hour¡A´X¥G¬O45mm/hour¡C©M§Ú­Ì¦b¹êÅç«Ç°µ¥X¨Óªº¬Û¦ü¡C¤ôº¯³z§Ö¡A¤ô½èºÞ¨î¨S¦³¹F¨ì¼Ð·Ç¡C©Ò¥H§Ú­Ì«ç»ò¿ì¡H§Ú­Ì´N¦bªì´Á¶¥¬q, ¦bª¼ºÞ¥X¤ô¤f¥ý¸Ë¤@­Ó¤ôÀsÀY¡C·íinfiltation rate ¤Ó°ª®É¡A§Ú­Ì§â¤ôÀsÀYÃö¨ì¤@¥b¡AÅý¥¦¥X¤ô¶q­°§C¡C¥X¤ô¶q­°§Cªº·N«ä´N¬O¤ôº¯ªº¤U¨Ó¡B¦ý¥X¤£¥h! ©Ò¥H¾ã­Ósand-mix layer becomes saturated¡C¤ô¬y°ÊºC¡A´N¥i¥H¹F¨ì water quality improvement¡Cµ¥¨ì LID unit ¦~¬ö¤j¤F¡Aclogging effect ¨Ï¤ô¨«°Ê¶V¨Ó¶VºC¡A³o®É­Ô§Ú­Ì¦A§â¤ôÀsÀY¥´¶}¡C©Ò¥H§Ú­Ì¥i¥H¦³¨â¶¥¬q¡B¤T¶¥¬qªºÀ³¥Î¡C§Ú­Ì³o¼Ë°µ¡A¬J¥i¥H«O«ù¤ô½è¡A¤S¥i¥HÅý¥¦ªº¾Þ§@¬O¤ñ¸û²Å¦X¸gÀٮįq¡C
(Many valve operations can be well controlled through the web-based remote control or there is no need of hand operations in field.)

 

This is the outlet of seepage flow from a rain garden. The seepage flow is adjusted by a cap orifice and measured with a weir. Nowadays, a field valve can be operated with a web-based remote control from a distance.

 

°Ý¡G¦b°µ¹êÅç¡Aµo²{§A«Ü³ßÅw¥Î urban waste materials¡A¤£¬O¥¦ªºlife cycle«Ü®e©ö­°§C¡A¬°¤°»ò·|°µ³oºØ¿ï¾Ü¡A¨ä¥Lªº materials¤£¬O¤@¼Ë¥i¥H¹F¨ì®ÄªG¶Ü¡H

¢Ï¡G­ì¦]¬O³o¼Ë¤l¡A§Ú­Ì·í®Éªº LID Research Team¡A¦³¤@¥b¬O Landscaping Experts¡A¥L­Ì´£¨Ñ§Ú­Ì©Ò¦³¤£¦Pªº urban waste materials¡C¹³¸H¬Á¼þ²~¡BªQªG¡BªQ¸­¡Bªº¿jÀY¡Bíu³ø¯È¡B½ü­L¡C§Ú­Ì¸g¹L chemical processes¡A¸g¹L¿z¿ï¤§«á¡A§Ú­Ì»{¬°soil and¾ð¸­±ÀªÎ²V¦Xª«³Ì®e©ö©Õ¦X¡A¤S«K©y¡C¬ü°ê¬F©²²{¦b­n¨D¤g¦a¶}µo¤@©w­n§@ stormwater LID¡A¦]¦¹¶}µo¦¨¥»«Ü°ª¡A©Ð»ù´N°ª¡C¤½¥Á´N©ê«è»¡¡u¦í¤£°_¡v¡ALID ªº³]­pÅܦ¨¤@­Ó social-economic problem¡C©Ò¥H§Ú­Ì¥Ø«eªº¿ï¾Ü¤]³\¤£¬O³Ì¦nªº¡A¦ý¬O®Ú¾Ú§Ú­ÌDenver·í¦aªº¸gÀٮĪG¡C

 

REFERNCES:

Guo, James C.Y. and Mackenzie, K (2014). “Modeling Consistency for small to large watershed studies”, ASCE J. of Hydrologic Engineering, V 19, N8, Aug , 04014009-1 to -7.

Guo, James C. Y. Urbonas, B. and MacKenzie K. (2014) “Water Quality Capture Volume for LID and BMP Designs”, ASCE J of Hydrologic Engineering, Vol 19, No 4, April, 682-686

Guo, James C.Y. and Urbonas B. (2014) “ Volume-based Runoff Coefficient”, ASCE Journal of Irrigation and Drainage Engineering, V 140, N 2, Feb, 04013013-1 to -5.

Guo, James C.Y. (2014). Discussion on “Storm Centering Approach for Flood Predictions from Large Watersheds”, ASCE Journal of Hydrologic Engineering, Vol 19, No 1,Jan., pp 272-274

Guo, James C.Y. (2013). “Green Concept in Stormwater Management”, Journal of Irrigation and Drainage Systems Engineering, Vol 2, Issue 3, ISBM 2168-9768.

Blackler, G. and Guo, James C.Y.(2013). “Paved Area Reduction Factors under Temporally Varied Rainfall and Infiltration”, ASCE Journal of Irrigation and Drainage Engineering, Vol. 139, No. 2, February 1,

Blackler, G. and Guo, James C.Y., (2012). “Field Test of Paved Area Reduction Factors using a Storm Water Management Model and Water Quality Test Site," ASCE Journal of Irrigation and Drainage Engineering, Vol. 17, No. 8, August.

Guo, James C.Y. (2012). “Storm Centering Approach for Flood Predictions from Large Watersheds”, ASCE Journal of Hydrologic Engineering, Vol. 17, No. 9, September 1,

Kocman, S. M., Guo, J. C.Y. and Ramaswami A. (2012).” Waste-Incorporated Sub-base for Porous Landscape Detention Basin“, ASCE Journal of Environmental Engineering, Vol 137, No 10, Oct,

Guo, James C. Y. Cheng, Jeff, Wright, L.(2012) “Field Test on Conversion of Natural Watershed into Kinematic Wave Rectangular Planes, ASCE J. of Hydrologic Engineering, Vol. 17, No. 8, August.

Guo, James C.Y. (2012). “Off-stream Detention Design for Stormwater Management”, ASCE Journal of Irrigation and Drainage Engineering, Vol. 138, No. 4, April 1.

Guo, James C. Y. Shih, H. M. and MacKenzie K. (2012) “Stormwater Quality Control LID Basin with Micro pool”, ASCE Journal of Irrigation and Drainage Engineering, Vol. 138, No. 5, May 1.

Guo, James C.Y. (2012). “Cap-orifice as a Flow Regulator for Rain Garden Design ASCE J of Irrigation and Drainage Engineering, Vol. 138, No. 2, February.

Guo, James, C.Y., Urbonas, B., and K. MacKenzie (2011). “The Case for a Water Quality Capture Volume for Stormwater BMP”, J. of Stormwater, Oct.
 
Guo, James C.Y., Blackler, E G, Earles, A, and MacKenzie, K (2010) "Effective Imperviousness as Incentive Index for Stormwater LID Designs” ASCE J. of Irrigation and Drainage Engineering, Vol 136, No12, Dec.
 
Guo, James C.Y., Jones, J. and Earles, A.(2010). “Method of Superimposition for Suction Force on Trash Rack”, ASCE J. of Irrigation and Drainage Engineering, Vol 136, No11, Nov.

Guo, James C.Y., and Jones, J. (2010). “Pinning Force during Closure Process at Blocked Pipe Entrance”, ASCE J. of Irrigation and Drainage Engineering, Vol 136, No2, Feb.

Earles, T., Guo, J., MacKenzie, K., Clary, J., and Tillack, S. (2010) “A Non-Dimensional Modeling Approach for Evaluation of Low Impact Development from Water Quality to Flood Control”. doi: 10.1061/41099(367)32
Low Impact Development 2010: pp. 362-371.

Guo, James C.Y. (2010)“Preservation of Watershed Regime for Low Impact Development using (LID) Detention”, ASCE J. of Engineering Hydrology, Vol 15, No 1., January.

Guo, James C.Y., Kocman, S and Ramaswami, A (2009) “Design of Two-layered Porous Landscaping LID Basin,”, ASCE J. of Environ Engineering, Vol 145, Vol 12, December.

Guo, James C.Y. and McKenzie, K, and Mommandi, A. (2008) “Sump Inlet Hydraulics”, ASCE J. of Hydraulic Engineering, Vol 135, No 1, Nov.

Guo, James C.Y.(2009) “Retrofitting Detention Basin for LID Design with a Water Quality Control Pool”, ASCE J. of Irrigation and Drainage Engineering, Vol 135, No 6, October.

Guo, James C.Y. and Urbonas, B. (2009) “Conversion of Natural Watershed to Kinematic Wave Cascading Plane”, ASCE J. of Hydrologic Engineering, Vol 14, No. 8, August.

Guo, James C.Y., (2009) “Grade Control for Urban Channel Design”, Elsevier Science, J. of Hydro-Environmental Research, Online publication complete: 18-FEB-2009 DOI information: 10.1016/j.jher.2009.01.001, February/March, pp 1-4.

Guo, James C.Y. and Harrigan, Kelly (2009). “Conservative Design Rainfall Distribution”, ASCE J. of Hydrologic Engrg. Volume 14, Issue 5, pp. 528-530

Guo, James C.Y. and Gerald Blackler. (2009) “Least Cost and Most Efficient Channel Cross Sections”, ASCE  J. of Irrigation and Drainage Engineering, Vol 135, No. 2, pp 248-251 (March/April 2009)
Guo, James C.Y. and Cheng, J. Y.C.(2008) “Retrofit Stormwater Retention Volume for Low Impact Development (LID)”, ASCE J. of Irrigation and Drainage Engineering, Vol 134, No 6, December.

Guo, James C.Y. and Urbonas, B (2008) “Consistency between Colorado Urban Hydrograph Procedure and Rational Methods,”, Annual Natural Hazards News, published by Urban Drainage and Flood Control District, Denver, Colorado

Guo, James C.Y. (2008) Runoff Volume-Based Imperviousness Developed for Storm Water BMP and LID Designs”, ASCE J. of Irrigation and Drainage Engineering, Vol 134, No 2, April.

Guo, James C. Y. (2008) Inflection on Recession Hydrograph, Response to Reader’s Discussion on Dimensionless Kinematic Wave Unit Hydrograph for Storm Water Predictions, Vol 132, No. 4, ASCE J. of Irrigation and Drainage Engineering, July/August, Vol 134, No 2, ASCE J. of Irrigation and Drainage Engineering, April.

Guo, James C.Y. (2007) “ DOC. 1052 No. 869 for Videotape and Audio Deposition of James Chwen-Yuan Guo Recorded for Case of Andrew Sieger, Estate of Chad Sieger (Deceased) Versus The City of Omaha, Nebraska” in the District Court of Douglas County, Nebraska District Court, Omaha, Nebraska, June 4, 2007

Guo, James C.Y. (2007) Stormwater Detention and Retention LID systems, Invited, J. of Urban Water Management, July

Guo, James C.Y., Urbonas, B., Mackenzie, K, and Lloyd, D (2007) Stormwater Computer Design Tools, Invited, J. of Urban Water Management, July

Guo, James C.Y. and Clark, J. (2006). “Rational Volumetric Method for Off-line Storm Water Detention Design”, J. of PB Network for Water Engineering and Management, Vol 21, No 3, Issue No. 64, December.

Guo, James C.Y. and Hsu, E.S.C. (2006). “Hydrologic Modeling Consistency and Sensitivity to Watershed Size”, J. of PB Network for Water Engineering and Management, Vol 21, No 3, Issue No. 64, December.

Guo, James C.Y. (2006). “Decay-based Clogging Factor for Curb Inlet Design”, Vol 132, No. 11, ASCE J. of Hydraulic Engineering, November.

Guo, James C.Y. (2006). “Stormwater Predictions using Dimensionless Unit Hydrograph”, Vol 132, No. 4, ASCE J. of Irrigation and Drainage Engineering, July/August.

Guo, James, C.Y., Hsu Eric S.C., and Chen, Jeffery (2006). “¥ÃÄò¬x¤ôº¢¬y¦À¦aªí¤Î¦a¤U¨t²Î Sustainable Surface-Subsurface Storm water Retention System” Vol 14, No. 2, Journal of China Institute of Water Resources and Hydropower Research, June.
 
Jones, J, Guo, J.C.Y., and Urbonas, B. (2006). “Safety on Detention and Retention Pond Designs”, J. of Storm Water, Jan/Feb.

Guo, James C.Y. (2006). “Overland Flow Model for Hot Asphalt Oil Spill”, Vol 78, J. of Environmental Management, pp 102-105.

Guo, James C.Y. (2004). “Design of Urban Channel Drop Structure”, J. of Flood Hazards News, December,

Guo, James C.Y. (2004). “Hydrology-Based Approach to Storm Water Detention Design Using New Routing Schemes,” ASCE J. of Hydrologic Engineering, Vol 9, No. 4, July/August

Guo, James C.Y. (2003). “Design of Infiltrating Basin by Soil Storage and Conveyance Capacities,” IWRA International J. of Water, Vol 28, No. 4, December.

Guo, James C.Y. (2003). Response to readers’ discussion on "Rational Hydrograph Method for Small Urban Catchments," ASCE J. of Hydrologic Engineering, Vol 2, No.1, May/June.

Waugh, P.D., Jones, J.E., Urbonas, B.R., MacKenzie, K.A., and Guo, J. C.Y. (2002) “Denver Urban Storm Drainage Criteria Manual.”, ASCE J. of Urban Drainage, Vol 112, No 56.

Guo, James C.Y. (2002). “Overflow Risk of Storm Water BMP Basin Design,” ASCE J. of Hydrologic Engineering, Vol 7, No. 6, Nov.

Guo, James C.Y. and Urbonas, Ben. (2002). Runoff Capture and Delivery Curves for Storm Water Quality Control Designs,” ASCE J. of Water Resources Planning and Management, Vol 128, Vo. 3, May/June.

Guo, James C.Y. and Hughes, William. (2001). “Runoff Storage Volume for Infiltration Basin,” ASCE J. of Irrigation and Drainage Engineering, Vol 127, No. 3, May/June.

Guo, James C.Y. (2001). "Rational Hydrograph Method for Small Urban Catchments," ASCE J. of Hydrologic Engineering, Vol 6, No.4, July/August.

Guo, James C.Y., Urbonas, Ben. and Stewart, Kevin. (2001). “Rain Catch under Wind and Vegetal Effects,” ASCE J. of Hydrologic Engineering, Vol 6, No.1, in Jan.

Guo, James C.Y. (2001). “Design of Circular Infiltration Basin Under Water Mounding Effects,” ASCE J. of Water Resources Planning and Management, Vol 127, No.1, Jan/Feb.

Guo, James C.Y. (2000). “Street Storm Water Conveyance Capacity,” ASCE J. of Irrigation and Drainage Engineering, Vol 126, No 2, Mar/Apr,

Guo, James C.Y. (2000).  “Street Storm Water Storage Capacity”, J. of Water Environment Research, Vol 27, No 6., Sept./Oct.
 
Guo, James C.Y. (2000). “A Semi-Virtual Watershed Model by Neural Networks,” J. of Computer-Aided Engineering, Special Issue for Evolutionary and Neural Network Computing”, Vol 15, BLACKWELL publishers, Nov.

Guo, James C.Y. (2000). “Design of Grate Inlets with a Clogging Factor,” Advances in Environmental Research, Vol 4, Elsvier Science, Ireland.

Guo, James C.Y. (2000). “Storm Hydrographs for Small Catchments,” IWRA International J. of Water, Vol 25, No. 3, September.

 

ªÀ¹Îªk¤H»OÆW¨a®`ºÞ²z¾Ç·| ¥Xª©µo¦æ

 

¦a§}¡G·s¥_¥«·s©±°Ï¥_·s¸ô¤T¬q200¸¹9¼Ó    ¹q¸Ü¡G¡]02¡^8912-7498    ¶Ç¯u¡G¡]02¡^8912-7497    e-mail ¡Gservice@dmst.org.tw